

OCO-2 / MicroCarb Meeting, Caltech 27 January 2011

Orbiting Carbon Observatory-2 (OCO-2): The OCO-2 Instrument Overview

D. Crisp

Jet Propulsion Laboratory, California Institute of Technology OCO-2 Science Lead

27 January, 2011

Copyright 2011 California Institute of Technology. Government sponsorship acknowledged.

OCO-2 Measures 3 Spectral Regions

- O₂ A-band at 760 nm provides constraints on surface pressure, optical path length, and thin cloud/aerosol distribution
- Absorption in weak CO₂ band at 1610 nm is almost linearly dependent on CO₂ column
- Strong CO₂ band at 2060 nm
 - Somewhat less sensitive to the CO₂ column abundance
 - Very sensitive to clouds and aerosols
 - Also sensitive to water vapor column abundance and temperature profile
- Simultaneous retrievals in these three bands provide X_{CO2} estimates

The OCO-2 Instrument

- 3 co-bore-sighted, high resolution, imaging grating spectrometers
 - O₂ 0.765 μm A-band
 - CO₂ 1.61 μm band
 - CO₂ 2.06 μm band
 - Resolving Power > 20,000
 - Optically fast: f/1.8 (high SNR)
 - Swath: < 0.8° (10.6 km at nadir), resolved into up to 8 footprints
 - Sampling rate: 3 Hz
 - Mass: 140 kg, Power: ~105 W

Changes from OCO

- New cryocooler
- Known anomalies addressed

Same Spacecraft

The OCO-2 spacecraft

- Carries and points the instrument
 - Nadir, Glint, Target, and calibration observations
- Collects and transmits data to the NASA Ground Network
- Maintains its position in the A-Train

Orbital Sciences LEOStar-2 Bus

- 128 Gb of data storage
- 150 Mb/s X-band + 2 Mb/s S-band
- 4 Reaction wheels + 3 torque bars
- Articulated solar arrays
- Propulsion system for orbit maintenance
- Minimal changes to replace obsolete components

Instrument Block Diagram

Instrument Optical Block Diagram

OCO Optical Bench Assembly

Verifying Radiometric Calibration: The On-board Calibration System

O ₂ A-Band			

Weak CO₂

Strong CO₂

Detector Readout

Top Level Instrument Performance Requirements

Type of Requirement	O ₂ A-Band	Weak CO ₂	Strong CO ₂		
Radiometric*	SNR = 1 @ 1.9 x 10 ¹⁷ SNR = 360 @ 2.2 x 10 ²¹	SNR = 1 @ 9.0 x 10 ¹⁶ SNR = 250 @ 2.2 x 10 ²¹	SNR = 1 @ 1.0 x 10 ¹⁷ SNR = 180 @ 2.2 x 10 ²¹		
Spectral	Range: 0.758 to 0.772 μm Resolution: > 17,000:1 Sampling: > 2 pixels per slit	Range: 1.594 to 1.619 μm Resolution: > 20,000:1 Sampling: > 2 pixels per slit	Range: 2.045 to 2.081 μm Resolution: > 20,000:1 Sampling: > 2 pixels per slit		
Spatial	Along Slit: 14.6 + 0.4 mrads Cross Slit: < 2 mrad Alignment: < 0.2 mrad between bands				
Polarization	Alignment to Slit: < 8 degrees Knowledge: < 2.5 degrees				

^{*} Radiances are express in units of photons/m²/s/micron/steradian

Instrument is a Very Sensitive Imaging Spectrometer

Single Frame of Data using the Moon

- High SNR (given low illumination levels)
- High spectral resolution (absorption bands are clearly visible)
- Imaging works (moon is ~0.5° wide just as expected)

Example of Single Frame of OCO Data

High Signal to Noise / Low Stray light

Summary

The OCO-2 instrument was optimized for precise, bias-free measurements of the column-averaged dry air mole fraction, XCO2

- 1.61 micron CO2 band most sensitive to CO2
- O2 A-band and 2.06 micron CO2 band provide constraints on clouds, aerosols, and total dry air path
- High spectral resolution maximizes sensitivity
- Fast (f/1.8) optics and high throughput, combined with high QE, low noise detectors maximize signal-to-noise ratios
- Short exposure times (0.333 s) minimize footprint size, minimizing interference from clouds
- On-board calibration system facilitates maintenance of calibration after launch
- Use of spacecraft to point instrument precludes need for an additional pointing mechanism.